通过截断不变展开求奇异扰动Boussinesq方程的近似解(英文)  

Approximate Solutions of Singularly Perturbed Boussinesq Equation Using Truncated Invariant Expansion

在线阅读下载全文

作  者:吴江龙[1] 

机构地区:[1]宁波大学理学院,浙江宁波315211

出  处:《宁波大学学报(理工版)》2012年第4期127-132,共6页Journal of Ningbo University:Natural Science and Engineering Edition

基  金:Supported by the National Natural Science Foundation of China(11175092);Student Research Innovation Program(SRIP)of Ningbo University

摘  要:由于非线性偏微分方程的复杂性和非线性性,很难求出它们的准确解,因此某些合理近似以及通过截断不变展开求解实非线性系统是被考虑和建议的.文中一个简单截断不变展开及其一个普遍的赝势被用于奇异扰动Boussinesq方程,可以得到该方程的近似解,在某些情况下,这些解亦为准确解.Due to the complexity and nonlinearity of the nonlinear PDEs, obtaining the exact solutions is difficult. To tackle this problem, approximation methods are taken into consideration. In this paper, using the truncated invariant expansion, solving for the real nonlinear systems are proposed. Using a simple truncated invariant expansion with a universal pseudopotential for the singularly perturbed Boussinesq equation, approximate solutions of the above equation can be obtained. In some special cases, the accuracy of the solutions is found to be significantly satisfying.

关 键 词:近似解 截断不变展开 BOUSSINESQ方程 

分 类 号:O175.29[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象