基于压缩感知信号重建的自适应空间正交匹配追踪算法  被引量:8

Adaptive Space Orthogonal Matching Pursuit Algorithm for Signal Reconstruction Based on Compressive Sensing

在线阅读下载全文

作  者:姚远[1] 梁志毅[1] 

机构地区:[1]西北工业大学航天学院,西安710072

出  处:《计算机科学》2012年第10期50-53,共4页Computer Science

基  金:国家自然科学基金项目(60872158)资助

摘  要:传统的奈奎斯特采样定理规定采样频率最少是原信号频率的两倍,才能保证不失真的重构原始信号,而压缩感知理论指出只要信号具有稀疏性或可压缩性,就可以通过采集少量信号来精确重建原始信号。在研究和总结已有匹配算法的基础上,提出了一种新的自适应空间正交匹配追踪算法(Adaptive Space Orthogonal Matching Pursuit,ASOMP)用于稀疏信号的重建。该算法在选择原子匹配时采用逆向思路,引入正则化自适应和空间匹配的原则,加快了原子的匹配速度,提高了匹配的准确性,最终实现了原始信号的精确重建。最后与传统MP和OMP算法进行了仿真对比,结果表明该算法的重建质量和算法速度均优于传统MP和OMP算法。In order to well ensure reconstruction of the original signal,the traditional Nyquist sampling theorem requires that the sampling rate must be twice as much the highest frequency of the original signal at least,which causes a tremendous amount of calculation and the waste of resources.But the compressive sensing theory describes that we can reconstruct the original signal from a small amount of random sampling as long as the signal is sparse or compressible.Based on the research and summarization of the traditional matching algorithm,this paper presented a new adaptive space orthogonal matching pursuit algorithm(ASOMP) for the reconstruction of the sparse signal.This algorithm in-troduces an regularized adaptive and spatial matching principle for the choice of matching atoms with reverse thinking,which accelerates the matching speed of the atom and improves the accuracy of the matching,ultimately leads to exact reconstruction of the original signal.Finally,we compared the ASOMP algorithm with the traditional MP and OMP algorithm under the software simulation.Experimental results show that the ASOMP reconstruction algorithm is superior to traditional MP and OMP algorithm on the reconstruction quality and the speed of the algorithm.

关 键 词:压缩感知 稀疏信号 匹配追踪 重建算法 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象