基于神经网络的方程式赛车操纵逆动力学研究  

Exploring Inverse Dynamics for Handling Formula Racing Car with Neural Network

在线阅读下载全文

作  者:倪俊[1] 吴志成[1] 陈思忠[1] 

机构地区:[1]北京理工大学机械与车辆学院,北京100081

出  处:《机械科学与技术》2012年第10期1592-1595,共4页Mechanical Science and Technology for Aerospace Engineering

摘  要:以建立某方程式赛车方向盘转角与横摆角速度的非线性映射为目的,通过机械系统动力学仿真软件ADAMS建立了某方程式赛车的虚拟样机模型,建模过程中考虑了轮胎、减振器等非线性因素及空气动力特性。在方向盘角阶跃输入工况下,利用径向基函数神经网络建立了方向盘转角与横摆角速度之间的非线性映射关系。输入的识别结果表明:利用径向基网络进行方程式赛车操纵逆动力学的研究方法是可行的,并且识别精度较高。We aim to build the nonlinear mapping relationship between the angular velocity and the steering angle of a certain formula racing car. Its virtual prototype model was built by using the simulation software ADAMS. tak- ing into consideration the nonlinear factors such as tire and damping and their aerodynamics characteristics. Under the steering angle step input condition, the nonlinear mapping relationship between the angular velocity and the steering angle was built by using the radial basis function (RBF) neural network. The input identification results show that the above method is not only feasible but also highly accurate.

关 键 词:方程式赛车 非线性映射 识别 ADAMS 径向基函数网络 

分 类 号:U461[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象