基于灰色特征加权支持向量机的二维函数拟合  被引量:3

Two-dimension functions fitting based on grey feature weighted support vector machine

在线阅读下载全文

作  者:饶刚[1] 刘琼荪[1] 高君健[1] 

机构地区:[1]重庆大学数学与统计学院,重庆401331

出  处:《计算机工程与设计》2012年第10期3975-3978,3983,共5页Computer Engineering and Design

基  金:重庆大学"211工程"三期创新人才培养计划建设基金项目(S-09110)

摘  要:函数拟合通常是在有限的训练样本下对函数变量之间的关系做出预测,由于在实践中训练样本本身存在噪音和孤立点,用传统的方法进行函数拟合的效果不佳。考虑到不同特征对于回归问题相关程度的不同,研究了以灰色关联度作为权重的特征加权支持向量回归机算法,并推广运用于二维函数的回归拟合。仿真结果表明,灰色特征加权方法较传统支持向量回归机,具有更好的回归拟合能力。Fitting function normally predict a relationship between variables by limited training samples of the trained function. In practice due to inherent noise and isolation of training samples, the results of fitting function often do not meet the require- ments by using traditional methods. Considering the difference of feature' s correlative degree to the regression problem becomes large, the support vector regression machine algorithm is researched, which uses the grey correlation grade as the feature weight. And extend in the application of the two-dimension functions fitting. The experiment resultal proves that this algorithm can get the better competence of regression fitting than the traditional support vector machine (SVR).

关 键 词:支持向量回归机 灰色关联度 特征 加权 拟合 

分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象