检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《合肥工业大学学报(自然科学版)》2012年第10期1436-1440,共5页Journal of Hefei University of Technology:Natural Science
摘 要:文章构造了一组带有2个形状参数α、β的四次Wang-Ball型基函数,它是四次Wang-Ball基函数的扩展。基于Wang-Ball型基函数定义了带双参数的Wang-Ball型曲线和张量积曲面,这种曲线不仅具有四次Ball曲线的特性,还能够实现四次Wang-Ball曲线到Said-Ball曲线的过渡以及四次Said-Ball曲线到Bézier曲线的过渡,并且包含了Wang-Ball曲线与Bézier曲线之间的无数曲线。文中分析了基函数及曲线的性质和2个形状参数的几何意义;给出了2条Wang-Ball型曲线的G0、G1、G2连续拼接条件;最后以实例表明构造的新曲线为曲线曲面造型提供了一种有效方法。A class of quartic Wang-Ball type blending functions with two shape parameters α,β is pres- ented in this paper, which is an extension of quartic Wang-Ball blending functions. Based on Wang- Ball type blending functions, the quartic Wang-Ball type curves and surfaces with two shape parame- ters are defined. This class of curves not only inherits the outstanding properties of the quartic Ball curve, but also realizes the transition from quartic Wang-Ball curve to Said-Ball curve and the transi- tion from quartic Said-Ball curve to Bezier curve, and it contains many curves locating between the quartic Wang-Ball curve and Bezier curve. The properties of the blending functions and curves, and the geometrical property of two shape parameters are analyzed. The G0 - continuity, G1- continuity and G2 - continuity conditions of two pieces of curves are also given. Some examples illustrate that this method of constructing curves and surfaces is useful for curves and surfaces design.
关 键 词:WANG-BALL曲线 BÉZIER曲线 形状参数 曲线设计 连续性
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229