基于复杂列车服务网络的客流分配方法研究  被引量:22

Research on Passenger Flow Assignment Method Based on Complex Train Service Network

在线阅读下载全文

作  者:佟璐[1] 聂磊[1] 付慧伶[1] 

机构地区:[1]北京交通大学交通运输学院,北京100044

出  处:《铁道学报》2012年第10期7-15,共9页Journal of the China Railway Society

基  金:国家自然科学基金(60870012);国家科技支撑计划项目(2009BAG12A10);铁道部科技研究开发计划(2011X014-E);轨道交通控制与安全国家重点实验室自主研究课题(RCS2009ZT008);中央高校基本科研业务费专项资金(2011JBM063)

摘  要:研究旅客列车开行方案形成的复杂列车服务网络属性及其构造方法,在分析多层次客流选择行为基础上,确定列车服务网络弧段阻抗。建立体现差异性服务水平需求的复杂列车服务网络客流分配模型,该模型以旅客出行效益最大化为目标,通过分别限制不同出行距离、不同层次旅客的换乘次数及换乘时间,设置旅客出行径路的多约束条件。设计改进的蚁群算法和Frank-Wolfe算法构成的混合算法进行求解,为更加符合旅客的选择行为,按OD客流量、出行距离、优先级等规则进行流量加载。以京沪高速铁路旅客列车开行方案为例进行客流分配,验证模型和算法的有效性。The attritutes and constructing method of the complex train service network(CTSN) formed on the basis of passenger train plans were studied.By analyzing multi-level passengers’ choice behavior,the arc resistance of CTSN was determined.The passenger flow assignment model of CTSN reflecting diversified passengers’ travel demand was estabished.The model was made to take the maximized passenger travel utility as the objective.The multi-constraint conditions of passenger travel routes were set by respectively restricting the number of transfer times and the transfer time of passengers with different travel distances and different levels of travel demand.The hybrid algorithm consisting of the improved ant colony and Frank-Wolfe algorithms was designed to solve the model.In order to match the choice of rail passenger behavior,strengthening of passenger flow was assigned by rules of OD traffic,trip distance and priority.Finally,case study on passenger train plans of part of the network centered by the Beijing-Shanghai High-speed Railway was made to accomplish passenger traffic assignments and the effectiveness of the proposed model and algorithm was proved.

关 键 词:旅客列车开行方案 复杂列车服务网络 服务水平 客流分配 混合算法 

分 类 号:U293.13[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象