检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁波大学建筑工程与环境学院,浙江宁波315211 [2]浙江大学建筑工程学院,杭州310058
出 处:《工业建筑》2012年第10期67-71,149,共6页Industrial Construction
基 金:浙江省科技厅公益技术研究工业项目(2011C21078);宁波市科技局社会发展科研项目(2011C50017);宁波大学学科项目
摘 要:斜拉桥阻尼组成复杂,阻尼矩阵的精确确定比较困难,在假定斜拉桥子结构(梁、塔、索、支座等)的阻尼系数不随频率和振幅变化的情况下,利用状态空间方法计算了斜拉桥有阻尼频率和模态,提出一种根据已知少数振型阻尼比通过反复迭代求得阻尼系数及阻尼矩阵估计值的方法。利用斜拉桥非正交阻尼计算理论,结合参数敏感性分析和最小二乘法优化算法,可以精确计算斜拉桥各子结构的阻尼系数,得到斜拉桥阻尼矩阵的精确估计,为建立斜拉桥精确的有限元模型提供基础。The damping makeup of cable-stayed bridges is complicated.It is a tough work to determine the damping matrices accurately.On the assumption of the damping coefficients of substructures in cable-stayed bridge(such as girder,tower,cable and support etc) are constant value and don't vary with frequency or vibration amplitude.An iteration method of damping coefficients and damping matrices estimation was presented.It was based on several known modal damping ratios,through the calculation of complex damped frequency and modal shape utilizing the state-space methodology.With the theory of non-proportional damping calculation of cable-stayed bridge,incorporating parameter sensitivity analysis and the least square optimization procedure,the damping coefficients of substructures were accurately determined,and the damping matrices were estimated with relatively high accuracy.Which provided a basis for setting up accurate finite element model of cable-stayed bridges.
分 类 号:U441.3[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229