检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:余向洋[1] 沙润[2] 朱国兴[1] 胡善风[1]
机构地区:[1]黄山学院旅游学院,黄山245021 [2]南京师范大学地理科学学院,南京210097
出 处:《地理科学进展》2012年第10期1353-1359,共7页Progress in Geography
基 金:国家自然科学基金项目(41071327);安徽省教育厅人文社科重点项目(SK2012A118);安徽省高校科学研究项目(KJ2011Z366);黄山学院科研项目(2011xkjq001)
摘 要:旅游地的发展演化过程研究大多采用Bulter的生命周期理论路径,少有文献从波动的视角理解和分析旅游地的发展演化过程。本文以黄山风景区为例,采用经验模态分解方法(EMD)尝试从波动的视角分析景区客流波动特征,并利用波动性特征对其发展进行组合预测(经验模态分解方法和最小二乘支持向量机方法的组合)。研究结果表明:黄山景区客流波动呈现出多种形态,在增长趋势的基础上叠加了季节性波动、景区旅游周期波动和景区经济周期波动。其与最小二乘支持向量机组合预测模型能够对景区客流进行有效预测,并且运算速度快,预测精度有所提高;与生命周期曲线相比较更加直观、微观、准确,并且能够进行较为准确的客流预报,有助于景区规划管理和战略决策。The research on dynamic evolution of tourist destination has been confined to the path of Bulter' s destination lifecycle model so that other research perspectives including fluctuation model have been neglected. Taking Huangshan Scenic Areas as a case study, this paper analyzes fluctuation characteristics of tourist arrivals by Empirical Mode Decomposition (EMD), and employs a combined forecasting model to predict tourist arriv- als based on EMD and LS-SVM (Least Squares Support Vector Machines). The results show that the fluctuation- of tourist arrials in Huangshan Scenic Areas present such patterns as continuously increasing trend, seasonal fluc- tuation, tourism cycles and economic cycles, and the combined forecasting model can predict tourist arrivals more rapidly and more accurately. All in all, EMD from fluctuation perspective can disclose dynamic evolution more directly, deeply and accurately, and combined with LS-SVM it can accurately predict tourist arrivals, which is conductive to planning management and strategic decision of scenic areas.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198