检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭裕兰[1,2] 鲁敏[1] 谭志国[1] 万建伟[1]
机构地区:[1]国防科技大学电子科学与工程学院,长沙410073 [2]School of Computer Science and Software Engineering,The University of Western Australia,Perth 6009
出 处:《模式识别与人工智能》2012年第5期783-791,共9页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.60972114);国家博士后科学基金项目(No.20100481511);国家留学基金委CSC奖学金项目(No.2011611067)资助
摘 要:基于距离图像的三维目标识别是计算机视觉领域的研究热点,而局部特征提取则是实现遮挡和复杂场景下三维目标识别的关键.文中首先介绍距离图像及其表示形式,详细分析法向量、曲率和形状索引等微分几何属性.进而将局部特征检测方法分类为固定尺度和自适应尺度方法,将局部特征描述方法分类为基于深度信息、基于点云空间分布和基于几何属性分布的方法,并对各种具体算法进行阐述、分析和定性评价.最后对现有方法进行归纳总结,并指出所面临的挑战及进一步研究的方向.Three dimensional (3D) object recognition is a hot research topic in computer vision. Local feature extraction is a key stage for 3D object recognition with the presence of occlusion and clutter. Firstly, range images and their representations are described. The differential geometric attributes are introduced, including the surface normal, the curvature and the shape index. Then, the local feature detection methods are classified into fixed scale method and adaptive scale method. And the local feature description methods are classified into depth value based, point spatial distribution based and geometric attributes distribution based methods. These methods with their merits and demerits are described. Finally, the existing methods are summarized and several challenges and future research directions are pointed out.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30