基于Gammatone滤波器组的听觉特征提取  被引量:30

Auditory Feature Extraction Based on Gammatone Filter Bank

在线阅读下载全文

作  者:胡峰松[1,2] 曹孝玉[1] 

机构地区:[1]湖南大学信息科学与工程学院,长沙410082 [2]北京师范大学管理学院,北京100875

出  处:《计算机工程》2012年第21期168-170,174,共4页Computer Engineering

摘  要:目前主流说话人特征参数在噪声环境中的鲁棒性较差。为此,提出一种可用于说话人识别的听觉倒谱特征系数。分析人耳听觉模型的工作机理,采用Gammatone滤波器组代替传统的三角滤波器组模拟人耳耳蜗的听觉模型,用指数压缩代替固定的对数压缩,模拟人耳听觉模型处理信号的非线性特性。在基于高斯混合模型分类器的识别算法下进行仿真实验,结果表明,该听觉特征具有比梅尔频率倒谱系数和线性预测倒谱系数更好的抗噪声能力。Aiming at the problem that speaker's feature coefficients have poor robustness in noise environment, this paper proposes an auditory cepstral coefficient for speaker recognition. It analyzes the working mechanism of the human auditory model, simulates the auditory model of human ear cochlea by Garnmatone filter banks replaces the traditional triangular filter banks. Based on the nonlinear signal processing capability of human auditory model, exponential compression is used instead of the fixed logarithm compression. Simulation experiment is conducted based on Gaussian Mixed Model(GMM) recognition algorithm. Experimental results show that the auditory feature has better noise robusmess than Mel Frequency Cepstral Coefficient(MFCC) and Linear Prediction Cepstral Coefficient(LPCC).

关 键 词:说话人识别 特征提取 Gammatone滤波器 听觉模型 倒谱系数 鲁棒性 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象