Apriori算法的改进及其在试卷分析系统中的应用  

Improved Apriori Algorithm and Its Application in Test Paper Analysis System

在线阅读下载全文

作  者:孙秀娟[1] 杜晓娟 于文爽[3] 

机构地区:[1]北京工业职业技术学院信息工程系,北京100042 [2]孝义市第三中学校,山西孝义032300 [3]北方工业大学信息工程学院,北京100144

出  处:《北京工业职业技术学院学报》2012年第4期22-25,共4页Journal of Beijing Polytechnic College

基  金:北京市自然科学基金项目(4062012);北京市市属高校学术创新团队项目资助

摘  要:Apriori算法是一种挖掘布尔型关联规则的典型算法。该算法在生成频繁项集时会有频繁的数据库扫描操作,并且在由低维频繁项集连接生成高维候选项集时,如果频繁项集维数过大,笛卡尔积后就会产生大量的候选项集,从而影响算法的效率。针对上述2个方面对Apriori算法进行改进,并将改进后的算法应用在试卷分析系统中。经过系统测试,改进后的算法具有较高的效率和较强的稳定性。Apriori algorithm is a typical Boolean association rules mining algorithm. Apriori algorithm will scan database frequently when generating frequent item sets, and if low - dimensional candidate item sets are too large, after Descartes operation it will generate enormous high - dimensional frequent item sets . These two reasons will affect the efficiency of the Apriori algorithm. This paper improved the apriori algorithm on the two issues, and the improved algorithm in the paper are applied in test paper analysis system. After testing, the improved algorithm has higher efficiency and better stability.

关 键 词:数据挖掘 试卷分析 关联规则 APRIORI算法 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象