图簇Y_(λ_kδ)∪β_kS_δ~*的伴随分解及其补图的色等价性  

The Factorization of Adjoint Polynomials of Graphs Y_(λ_kδ)^(S^*)∪β_kS_δ~* and Chromatically Equivalence Analysis

在线阅读下载全文

作  者:郝萃菊[1] 张秉儒[2] 

机构地区:[1]青海大学财经学院,青海西宁810008 [2]青海师范大学数学系,青海西宁810008

出  处:《数学的实践与认识》2012年第22期251-264,共14页Mathematics in Practice and Theory

基  金:国家自然科学基金(10671008)

摘  要:设P_n是具有n个顶点的路,令δ=rn+1,我们S_δ~*表示把rP_(n+1)的每个分支的一个1度点重迭在一起得到的图.用Y_(λ_1δ)^(S*)表示把r_1S_δ~*中每个分支的r度顶点与S_δ~*的r度顶点依次邻接后得到的图,Y_(λ_2δ)^(S*)表示把用r_2Y_(λ_1δ)^(S*)中每个分支的r+r1度顶点与S_δ~*的r度顶点依次邻接后得到的图,一般地,Y_(λ_kδ)^(S*)表示把用r_kY_(λ_(k-1)δ)^(S*)中每个分支的r+r_k-1度顶点与S_δ~*的r度顶点依次邻接后得到的图,运用图的伴随多项式的性质,证明了图Y_(λ_kδ)^(S*)∪β_kS_δ~*的伴随多项式的因式分解定理,进而得到了这类图的补图的色等价性.Let Pn be the path with n vertices and let S*δ(δ=rn+1) be the graph consisting of rPn+1 by coinciding one vertex of degree 1 of each component of rPn+1. We denote by Yλ1δS* the graph consisting of r1S*δ and S*δ by adjacenting the vertex of degree r of every component of r1S*δ with the vertex of degree r of S*δ, respectively, and let Yλ2δ S* be the graph obtained from Yλ2δ S* and δ S* by adjacenting the vertex of degree r+r1 of every component of r2 Yλ1δ S* with the vertex of degree r of S δ *, respectively, In geaeral, Yλκδ S* be the graph consisting of by adjacenting the vertex of degree of every component of with the vertex of degree r of , By applying the properties of adjoint polynomials, We prove that factorization theorem of adjoint polynomials of kinds of graphs Furthermore, We obtain structure characteristics of chromatically equivalent graphs of their complements.

关 键 词:色多项式 伴随多项式 因式分解 色等价性 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象