检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张宁[1,2] 孔芳[1,2] 李培峰[1,2] 周国栋[1,2] 朱巧明[1,2]
机构地区:[1]苏州大学计算机科学与技术学院,江苏苏州215006 [2]江苏省计算机信息处理技术重点实验室,江苏苏州215006
出 处:《中文信息学报》2012年第6期51-58,共8页Journal of Chinese Information Processing
基 金:国家自然科学基金资助项目(60873150,90920004,61003153);国家教育部博士点基金资助项目(200802850006,20093201110006)
摘 要:与实体指代不同,事件指代因为其先行词候选是一个事件,与名词性的指代词具有完全不同的语义分类体系,因此适用于实体指代消歧的大多数特征都不能用于事件指代消歧。该文给出了一个基于机器学习方法的事件代词指代消歧平台,详细介绍了平台的实例生成和特征选择过程,并给出了平台在OntoNotes3.0语料上的事件代词指代消歧的结果,对结果进行了分析。从实验结果可以看到,给出的平台获得了较好的系统性能。In event anaphora resolution, the antecedent of the anaphor is an event and the anaphor is a noun phrase. They are parts of different semantic categorization systems, and thus most of features applied in entity anaphora resolution are not appropriate for event anaphora resolution. This paper proposes an event pronoun resolution framework via a machine learning approach. The instances creation and the features selection are presented in detail. This paper also provides the experiment results on OntoNotes 3. 0 corpus, confirming pretty good F-measure of the framework.
关 键 词:事件代词指代消歧 机器学习方法 实例生成 特征选择
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.7.155