检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国矿业大学信息与电气工程学院,江苏徐州221116
出 处:《中国矿业大学学报》2012年第6期971-977,共7页Journal of China University of Mining & Technology
基 金:国家自然科学基金项目(60804022;60974050;61072094);教育部新世纪优秀人才支持计划项目(NCET-08-0836;NCET-10-0765);霍英东教育基金会青年教师基金项目(121066)
摘 要:针对遥感图像数据具有的高维数、非线性以及海量无标记样本的特性,提出了一种基于混合熵和L1范数的概率型最小二乘支持向量机分类方法.将准熵和熵差分融合,构造一种混合熵用以从海量无标记样本集中选出最有"价值"的待标记样本;基于L1范数距离度量,进一步从待标记样本集中筛选出孤立点和冗余点加以剔除;基于初始已标记样本以及筛选得到的样本,训练得到概率型最小二乘支持向量机.对反射光学系统的成像光谱仪(ROSIS)高光谱遥感图像进行了分类实验.结果表明:所提分类方法的总精度和Kappa系数分别达到了89.90%和0.868 5,能够以较少的训练样本得到较高的分类精度,其更适于处理遥感图像分类问题.Aiming at remote sensing image data having properties of high-dimension, nonlinearity, and massive unlabeled samples, a kind of probability least squares support vector machine (PLSSVM) classification method based on hybrid entroy and Ll-norm was proposed. At first, a hybrid entroy was designed by combining quasi-entropy with entropy difference, which was used to select the most 'valuable' unlabeled samples from the massive unlabeled sample set. In the second step, a L^-norm distance mectric was used to further select and to remove outliers and redundant data from the most 'valuable' unlabeled samples. At last, the original labeled and the selected unlabeled samples were adopted to train the PLSSVM. Experimental results on ROSIS hyperspectral remote sensing image show that the overall accuracy and Kappa coeffi- cient of the proposed classification method reach 89.90% and 0. 868 5 respectively. The pro- posed method can obtain higher classification accuracy with few training samples, which is much applicable for classification problem of remote sensing image.
关 键 词:遥感图像 混合熵 L1范数 主动学习 概率型最小二乘支持向量机
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15