检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学现代设计与集成制造教育部重点实验室,陕西西安710072
出 处:《计算机集成制造系统》2012年第11期2492-2501,共10页Computer Integrated Manufacturing Systems
基 金:国防基础科研资助项目(B2720060292);国家自然科学基金资助项目(50605051)~~
摘 要:为更有效地求解柔性作业车间调度问题,综合考虑其中的机器分配与工序排序问题,建立了相关析取图模型,提出一种混合遗传—蚁群算法。该算法首先通过遗传算法获取问题的较优解,据此给出蚁群算法的信息素初始分布;之后充分利用蚁群算法的正反馈性进行求解,采用精英策略对蚁群的信息素进行局部更新;最后借鉴遗传算法交叉算子的邻域搜索特性扩大蚁群算法解的搜索空间,从而改善解的质量。通过3个经典算例的实验仿真,以及与其他算法的比较,验证了所提算法的可行性与有效性。To solve Flexible Job-Shop Scheduling Problem(FJSP)more effectively, a related disjunctive graph model was built and a hybrid Genetic Algorithm(GA)-Ant Colony Optimization( ACO) was proposed by considering equip- ments arrangement and operation sequencing. In this algorithm, a better solution to the problem was obtained by ge- netic algorithm, and pheromones initial distribution of ACO was provided on this basis. The positive feedback of ACO was used to solve the problem, and the local update of the pheromones were conducted by elitist strategy. The neighborhood searching feature of crossover operator in GA was used to increase the search space of ACO, thus the quality of solution was improved. Through the experimental simulation of 3 classical examples, the feasibility and effectiveness of proposed algorithm were verified.
关 键 词:柔性作业车间调度问题 蚁群算法 遗传算法 精英策略
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.57