加权相似度及加权支持向量机的短期负荷预测  被引量:5

Short-term load forecasting based on weighted similarity and weighted support vector machine

在线阅读下载全文

作  者:陈乐[1] 

机构地区:[1]华南理工大学理学院,广东广州510640

出  处:《计算机工程与设计》2012年第12期4769-4773,共5页Computer Engineering and Design

摘  要:短期电力负荷预测中,针对维数比较高、各影响因素差异大、随机误差差异性大等问题,提出一种基于加权相似度和加权支持向量机的模型。首先,通过主成分分析得到负荷数据的综合因子,利用灰色关联分析分析综合因子与各影响因素的关系,计算各个影响因素的权重;其次依据权重采用加权相似度公式获得相似日,即样本数据;最后,针对相似日,采用加权支持向量回归机进行建模,实现对短期电力负荷进行预测。实验结果表明了该方法的有效性。As for forecasting short-term power load, relatively high dimension, and large differences in random error and its fac- tors, this paper is based on weighted similarity and weighted support vector machine model for forecasting short-term power load. Principal component analysis is consolidated to get load data factor, and the use of gray relational analysis and computation of a composite factor of the relationship among various factors helps to arrive at the weight of various factors. According to the weight, the weighted similarity formula can conclude similar day, i. e. the sample data. For similar days, using weighted sup- port vector regression model ultimately can make the short-term power load forecasting. The results show that the method is an effective short-term power load forecasting.

关 键 词:主成分 灰色关联分析 相似度 加权支持向量机 负荷预测 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象