检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学噪声振动工程研究所,合肥230009 [2]安徽省汽车NVH与可靠性重点实验室,合肥230009
出 处:《噪声与振动控制》2012年第6期169-174,共6页Noise and Vibration Control
基 金:国家"863"高技术研究发展计划资助项目(2006AA110101);安徽省科技攻关项目(08010202011;08010201002)
摘 要:应用鲁棒优化设计理论,考虑设计变量的不确定性对优化设计结果的影响,建立鲁棒优化模型。以动力总成悬置系统能量解耦为目标,悬置刚度参数为设计变量,考虑设计目标的均值和标准差,建立动力总成悬置系统的鲁棒优化模型。针对粒子群算法求解容易陷入局部最优解的问题,采用混合粒子群算法对动力总成悬置系统的悬置刚度参数进行鲁棒优化,并用Monte Carlo方法进行分析,以考察设计值的变化对目标函数的影响。结果表明,优化方法可以有效提高悬置系统的鲁棒性。Considering the influence of the uncertainty of design variables on the optimization design, the robust optimization design theory was used to build a robust model for the powertrain mounting system of automobiles. In this model, decoupling of energy distribution was taken as the target, the stiffness parameters of the mounting was taken as a design variable, and the mean and standard deviation of the target results were considered. Aiming at the problem that the particle swarm algorithm was easy to fall into a local optimal solution, a hybrid particle swarm algorithm was adopted to optimize the stiffness of the mounting of the powertrain mounting system, and the Monte Carlo method was used to analyze the optimized results to examine the influence of the variety of design values on the objective function. The results show that the method can improve the robustness of the mounting system effectively.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28