检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李永伟[1] 韩京津[1] 袁涛[1] 朱婧菲[1]
机构地区:[1]河北科技大学电气工程学院,河北石家庄050018
出 处:《河北科技大学学报》2012年第6期501-505,共5页Journal of Hebei University of Science and Technology
基 金:河北省自然科学基金资助项目(F2009000728)
摘 要:针对高压电气设备的高电压、封闭性和监测环境恶劣等特点,采用拉曼光纤传感器对其进行温度监测。根据故障特征量将故障进行分类处理,并利用多个并联的RBF神经网络进行高压电气设备故障的局部诊断,获得彼此独立的证据,再运用D-S证据理论融合算法对各个证据进行融合,最终实现对高压电气设备故障的准确诊断。通过实验证明:采用该诊断系统可有效提高诊断的可信度,减少诊断的不确定性。High-voltage electrical equipment(HVEE) has the characteristics of high voltage and closure, and works in harsh environments. Raman fiber sensor was used for temperature monitoring. After faults were classified, and several shunt-wound RBF networks were used to local HVEE fault diagnosis, independent evidences were acquired. Then D-S evidence theory fusion algorithms were used to fuse evidences. Accurate diagnosis was achieved finally. The diagnostic tests prove that the system can improve the reliability of the diagnosis and decrease the uncertainty markedly.
关 键 词:高压电气设备 故障诊断 拉曼散射 信息融合 D-S证据理论 RBF神经网络
分 类 号:TM853[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38