检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴海洋[1] 杨飞然[2] 周琳[1] 吴镇扬[1]
机构地区:[1]东南大学信息科学与工程学院,南京210096 [2]中国科学院噪声与振动重点实验室(声学研究所),北京100190
出 处:《声学学报》2013年第1期105-112,共8页Acta Acustica
基 金:国家自然科学基金(60971098);国家自然基金青年基金(61201345)资助项目
摘 要:将矢量泰勒级数(Vector Taylor Series,VTS)特征补偿算法应用于说话人识别,给出了卷积噪声方差的近似闭式解,构建了联合快速估计卷积噪声和加性噪声均值和方差的框架。该算法可在无需失配环境先验信息的前提下,直接从失配语音中估计出卷积噪声和加性噪声的均值和方差,实现对环境失配的补偿。实验结果表明,在信道变化较大的无线信道下,卷积噪声方差的补偿最高可降低误识率3.24%.提升了系统的识别性能。在存在加性噪声的无线信道下,与基于线性失真模型的特征映射算法和倒谱均值减算法相比,本文算法可分别最大降低49.65%和68.06%的误识率,适合于信道变化较大的失配环境补偿。A feature compensation algorithm based on vector Taylor series (VTS) is applied to the speaker recognition system. The approximate closed-form solution of the channel variance is derived, and a joint rapid estimation framework for convolution noise and additive noise is proposed. The mean and variance of convolution noise and additive noise can be estimated from the mismatch speech to compensate the environment mismatch without any other prior information about the mismatch environment. The experimental results show that the compensation of the channel variance max- imally reduces the error rate by 3.24%, which improve the system performance in the wireless environment with large channel variations. Compared with feature mapping algorithm and cepstrum mean subtraction algorithm based on the linear distortion model, the proposed algorithm decreases the system error rate by 49.65% and 68.06% at maximum in the wireless environment with additional noise, respectively, especially for the mismatch environment of large channel variations.
关 键 词:补偿算法 说话人识别 泰勒级数 特征 矢量 噪声方差 卷积噪声 无线信道
分 类 号:TN912.34[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.210.224