检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宝鸡文理学院计算机科学系,陕西宝鸡721007
出 处:《西北大学学报(自然科学版)》2012年第6期925-930,共6页Journal of Northwest University(Natural Science Edition)
基 金:陕西省科技厅自然科学基础研究基金资助项目(SJ08-ZT13)
摘 要:目的提出了一种基于混沌映射的粒子群优化算法。方法一方面,应用逻辑自映射函数初始化均匀分布的粒群以提高初始解的质量;另一方面,根据群体早熟收敛的判断机制,在算法进化过程中引入局部变异机制和局部重新初始化粒群的方法以有效避免算法陷入局部收敛的缺点。结果该算法应用在基准测试函数优化中能有效提高全局寻优的性能,且稳定性好;应用在图像分割中取得了与遗传算法同样好的分割效果。结论提出的算法具有有效性和实用性,可用于求解高维复杂函数以及工程优化问题。Aim A chaos-map-based particle swarm optimization algorithm (CMPSO) is proposed. Methods On the one hand, the uniform particles are produced by logical self-map function so as to improve the quality of the ini- tial solutions. On the other hand, according to the decision mechanism of the swarms' premature convergence, the local mutation mechanism and the local reinitializing particles are introduced during the evolutionary process in or- cler to help the PSO to break away from the local optimum. Results The CMPSO proposed in this paper is applied to two benchmark functions and the experimental results show that it can improve the performance of searching glob- al optimum efficiently and own higher stability. Meanwhile, the CMPSO is used in image segmentation and it also can get the good result as that the Genetic algorithm does. Conclusion The proposed CMPSO is effective and prac- tical. In addition, it can be applied to solve the high-dimensional complex functions and some engineering optimiza- tion problems.
关 键 词:粒子群优化 逻辑自映射 早熟收敛 变异机制 图像分割
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15