检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工程大学信息与通信工程学院,哈尔滨150001 [2]天津航海仪器研究所,天津300131
出 处:《中国惯性技术学报》2012年第6期670-673,共4页Journal of Chinese Inertial Technology
基 金:国家973项目(61393010101-1);船舶工业国防科技预研项目(10J3.16)
摘 要:多传感器卡尔曼滤波算法具有良好的信号跟踪及估值能力,但由于信号噪声的影响,不同传感器所提供的信号会产生一定幅度的偏差,不利于对真实信号的预测及估计。为了解决上述问题,提出了基于DS证据理论的多传感器量测融合的方法,利用证据理论处理传感器的量测信息以及滤波器的估计值,从而合理地计算出单传感器的权值,并对子传感器的量测值进行二次赋值。经过融合后的结果具有良好的滤波效果。将改进的量测融合方法应用到目标跟踪问题中,获得的目标跟踪精度提高了近一倍。通过仿真实验对比验证了新算法的可靠性及精确性,表明该方法具有一定的实用价值。Multi-sensor Kalman filtering algorithm has good signal tracking and estimation ability.However,due to the influence of signal noise,the signals provided by different sensors would produce a certain level of deviations,and this will adversely influence the prediction and estimate to the true signals.In this paper,a method of multi-sensor measurement fusion was proposed based on the Dempster-Shafer evidence theory,in which the evidence theory was used to process the measurement information and the filter's estimate,thereby reasonably work out the weight of single sensor and make the second assignment to the sensor measurement values.The result after fusion has good filter effect.Then the improved measurement fusion method is applied to the target tracking problems,and the target tracking accuracy is almost doubled.The experiment results confirm the reliability and the accuracy of the algorithm,showing that it has certain practical value.
关 键 词:DS证据理论 KALMAN滤波 信息融合 多传感器
分 类 号:TN957[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.239.189