检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湘潭大学信息工程学院,湖南湘潭411105 [2]智能计算与信息处理教育部重点实验室(湘潭大学),湖南湘潭411105
出 处:《计算机应用》2013年第2期543-546,566,共5页journal of Computer Applications
基 金:湖南省科技厅资助项目(2012FJ3113);湖南省教育厅资助科研项目(10B109);湖南省重点学科建设项目
摘 要:针对微脉瘤的灰度分布特性,提出一种新的微脉瘤检测算法。首先通过多尺度匹配滤波筛选出候选微脉瘤病变点,并作为种子点利用区域生长技术分割出病变区域;然后提取病变区域特征向量;最终采用Adaboost神经网络集成分类器检测真实的微脉瘤病变。在公开的ROC数据集测试表明,所提方法检测的平均正确率达到40.92%,优于以往的双环滤波和形态学方法。According to the gray distribution characteristics of microaneurysms, a new microaneurysm detection algorithm was proposed. First, by multi-scale matched filtering, candidate microaneurysm lesions were picked out as seed points. And region growing technology was applied to segment the lesion areas. Then the features of the lesion areas were extracted. Finally the Adaboost neural network ensemble was designed to distinguish the real microaneurysm from all of the candidate lesions. The proposed method was tested on public ROC database. The experimental results show that the average detection accuracy is 40.92%, which is better than that of previous doublering filtering and morohologieal methods.
关 键 词:糖尿病性视网膜病变 眼底图像 神经网络集成 匹配滤波 微脉瘤检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.92