基于多尺度匹配滤波和集成学习的眼底图像微脉瘤检测  被引量:8

Microaneurysm detection based on multi-scale match filtering and ensemble learning

在线阅读下载全文

作  者:彭英辉[1,2] 张东波[1,2] 沈奔[1,2] 

机构地区:[1]湘潭大学信息工程学院,湖南湘潭411105 [2]智能计算与信息处理教育部重点实验室(湘潭大学),湖南湘潭411105

出  处:《计算机应用》2013年第2期543-546,566,共5页journal of Computer Applications

基  金:湖南省科技厅资助项目(2012FJ3113);湖南省教育厅资助科研项目(10B109);湖南省重点学科建设项目

摘  要:针对微脉瘤的灰度分布特性,提出一种新的微脉瘤检测算法。首先通过多尺度匹配滤波筛选出候选微脉瘤病变点,并作为种子点利用区域生长技术分割出病变区域;然后提取病变区域特征向量;最终采用Adaboost神经网络集成分类器检测真实的微脉瘤病变。在公开的ROC数据集测试表明,所提方法检测的平均正确率达到40.92%,优于以往的双环滤波和形态学方法。According to the gray distribution characteristics of microaneurysms, a new microaneurysm detection algorithm was proposed. First, by multi-scale matched filtering, candidate microaneurysm lesions were picked out as seed points. And region growing technology was applied to segment the lesion areas. Then the features of the lesion areas were extracted. Finally the Adaboost neural network ensemble was designed to distinguish the real microaneurysm from all of the candidate lesions. The proposed method was tested on public ROC database. The experimental results show that the average detection accuracy is 40.92%, which is better than that of previous doublering filtering and morohologieal methods.

关 键 词:糖尿病性视网膜病变 眼底图像 神经网络集成 匹配滤波 微脉瘤检测 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象