检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陕西师范大学数学与信息科学学院,陕西西安710062
出 处:《陕西师范大学学报(自然科学版)》2013年第1期1-4,14,共5页Journal of Shaanxi Normal University:Natural Science Edition
基 金:国家自然科学基金资助项目(11071151);陕西省自然科学基金资助项目(2010JM1005)
摘 要:研究了个体集和强个体集的范畴性质.利用范畴论方法证明了个体集范畴、强个体集范畴与集合范畴在许多方面是相似的.例如,具有任一给定基数的个体集和强个体集是存在的;个体集和强个体集对于子集、幂运算封闭;非空个体集范畴和非空强个体集范畴都是完备的monoidaltopoi.构造了超结构函子V和超幂函子HF并得到:(1)对任意非空强个体集X和Y,g:X→Y是单射(resp.,满射)当且仅当V(g)是单射(resp.,满射);(2)对任意集X和Y,g:X→Y是单射(resp.,满射)当且仅当HF(g)是单射(resp.,满射).The category of individual sets and the category of strong individual sets are proved to be much similar to the category of sets by using method of category theory. For example, for each cardinality a, there exists an individual set (resp. , a strong individual set) X. such that |Xa| =a,where |Xa| is the cardinality of Xa; individual sets and strong individual sets are closed under the operations of subsets and powers; both the category of nonempty individual sets and the category of nonempty strong individual sets are complete monoidal topoi. Superstructure functor V and ultrapower functor H~ are constructed and the following conclusions are obtained. (1) For any nonempty strong individual sets X and Y, a map g:X--~Y is an injection (resp. , a surjection) if and only if V(g) is an injection (resp. , a surjection); (2) For any sets X and Y,a map g:X→Y is an injection (resp. , a surjection) if and only if HF(g) is an injection (resp. , a surjection).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15