基于Sobel算子边缘检测的麦穗图像分割  被引量:18

Wheat Panicle Image Segmentation Based on Sobel Operator-edge Detection

在线阅读下载全文

作  者:陈含[1] 吕行军 田凤珍 董倩 王克俭[1] 韩宪忠[1] 

机构地区:[1]河北农业大学信息科学与技术学院,河北保定071001 [2]廊坊燕京职业技术学院,河北三河065200

出  处:《农机化研究》2013年第3期33-36,共4页Journal of Agricultural Mechanization Research

基  金:国家自然科学基金项目(60873236);河北省教育厅科学研究项目(2010251);河北省教育厅科学研究项目(Z2009122)

摘  要:单位面积麦穗数是小麦产量预测的一个重要参数,如何从图像上自动识别出麦穗数是测产的关键。为此,使用Sobel算子对麦穗图像进行边缘检测,使麦穗从混有少量杂草的模糊的背景中分割开,并与加权平均法、G分量法和最大值法处理后的图像进行了比较。随机选取麦穗无交叉的50幅图像样本,分别使用上述方法处理,Sobel算子法与其他3种方法相比,图像分割的总体耗时至少减少了10%。实验结果表明,Sobel算子对麦穗图像分割是有效的。The number of wheat panicle is an important parameter in the wheat yield forecast. How to identify the number of wheat from the image is the key of yield monitor. The Sobel operator edge detection image was used image segmentation of wheat panicle. Panicle were separated from the blurred and mixture a small amount of weed of background. Then com- pared this method with the weighted average method, the G component method and the maximum value method, the out- line of panicle were much clearer and more explicit than other three methods. Randomly selected 50 independent and o- verlapping panicle images as samples, using the above approach for processing, the segmentation based on Sobel operator of the overall time-consuming compared with the other three methods were increased by at least 10%. The experimental results show that the Sobel operator on the wheat image segmentation is effective.

关 键 词:麦穗 SOBEL算子 图像分割 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象