基于改进灰色神经网络的液压泵寿命预测  被引量:26

Life Prediction of Hydraulic Pump Based on an Improved Grey Neural Network

在线阅读下载全文

作  者:何庆飞[1] 陈桂明[1] 陈小虎[1] 姚春江[1] 

机构地区:[1]第二炮兵工程学院,西安710025

出  处:《中国机械工程》2013年第4期500-506,共7页China Mechanical Engineering

基  金:国防预研基金资助项目(9140A27020309JB4701);第二炮兵工程学院科技创新基金资助项目(XY2010JJB38)

摘  要:改进了GM(1,1)模型,提高了其精度和适应范围;将改进的GM(1,1)模型与神经网络预测模型相结合来构建灰色神经网络组合预测模型;提出了基于支持向量机的液压泵寿命特征启发式搜索策略,以液压泵寿命特征参数特征集的交叉验证错误率为评价指标,从液压泵的特征参数(振动、压力、流量、温度、油液信息等)中选取寿命特征因子;运用小波阈值降噪法进行降噪处理,提取典型的小波包能量特征作为模型的输入。以齿轮泵为例,将改进的灰色神经网络预测模型与原始GM(1,1)模型和改进GM(1,1)模型比较可知,灰色神经网络预测模型预测精度最高,达到98.42%。A life prediction method of hydraulic pump based on improved grey neural network was presented for the shortcomings of low precision forecasting model. Firstly, a new model was proposed based on the combination of the initial condition and the background value to improve the precision of the grey forecasting model. A SVM- based hydraulic pump lifetime feature heuristic elimination strategy was put forward, and the evaluation criterion of cross—validating error rate was adopted to select life feature form hydraulic pump features(vibration, pressure, flux, temperature, oil, and so on). Feature signals were de—noised by wavelet threshold de—noising method. Then representative energy features were selected by wavelet pocket energy spectrum algorithm. Taking gear pump as an example, the improved grey neural network model has higher precision than original GM(1,1) model and improved GM(1,1) model.

关 键 词:液压泵 寿命预测 GM(1 1)模型 神经网络 支持向量机 

分 类 号:TH137.5[机械工程—机械制造及自动化] TP802.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象