检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工商职业技术学院公共课教学部,浙江宁波315012
出 处:《纯粹数学与应用数学》2013年第1期50-59,共10页Pure and Applied Mathematics
基 金:浙江省教育厅科研项目(Y201225722)
摘 要:研究勾股方程给定正整数N时,方程是否有解,有几组解,怎样求解.在证明N的解与N的因数的基本解和本原解三者之间存在着一一对应关系的基础上,利用素数的本原解和两组本原解的勾股积运算,经逐次递推,导出了计算N的各种不同类型因数的本原解的计算方法,得到了计算任意N的所有解的简捷方法,并给出了计算全部解的组数的初等公式.填补了多年来研究勾股数的一个空白.Research on pythagorean equation when given positive integer N, has the equation a solution, how many solutions are there, and how to solve it. Prove the existence one-to-one corresponding relationship between the solution of N, the basic solution and the primitive solution of the factor of N. Then using the primitive solution of prime number and pythagorean plot operation of two groups of the primitive solution, by means of successive recursion, derives the methods to calculate the primitive solution of different types factor of N, which obtained all solutions of arbitrary N, and obtained elementary formula to calculate of the number of all group solutions. The given algorithm also filled the blank of research of pythagorean number over the years
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7