检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西大学行健文理学院,南宁530004 [2]玉林师范学院数学与信息科学学院,玉林537000 [3]广西大学数学与信息科学学院,南宁530004
出 处:《工程数学学报》2013年第1期145-158,共14页Chinese Journal of Engineering Mathematics
基 金:The National Natural Science Foundation of China(11271086);he Natural Science Foundation of Guangxi Province(2011GXNSFD018022);he Innovation Group of Talents Highland of Guangxi Higher School
摘 要:本文考虑了非线性不等式约束优化问题的求解问题,并结合模松弛SQP方法、强次可行方向法和积极集识别技术,提出了一个SQP算法.该算法在每一次迭代中,模松弛QP子问题的约束函数个数只决定于相应的识别集.不引进罚参数线搜索便可将阶段I(初始化)和阶段II(最优化)统一起来.在MFCQ条件下,得到算法的全局收敛性,若满足二阶充分条件,则算法具有强收敛性,且识别集能精确识别积极约束集.最后,我们给出了初步的数值结果.This paper deals with the solution of the optimization with nonlinear inequality constraint. Based on the norm-relaxed sequential quadratic programming (SQP) method and the method of strongly sub-feasible directions, an SQP algorithm with active set identification technique is proposed. At each iteration, the norm-relaxed quadratic programming subproblem only consists of the constraints corresponding to an active identification set. Without any penalty parameters, the line search tech- nique can help combine the initialization phase with the optimization phase. The global convergence is proved under the Mangasarian-Fromovitz constraint qualifica- tion. If the second order sufficient conditions are satisfied, the proposed algorithm is strongly convergent and the active constraints are exactly identified by the iden- tification sets. The preliminary numerical results are also reported.
关 键 词:约束优化 模松弛SQP方法 强次可行方向法 全局收敛和强收敛 积极识别集
分 类 号:O221[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7