检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学自动化学院组合导航与智能导航研究室,北京100081
出 处:《模式识别与人工智能》2013年第2期205-210,共6页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.61105092;91120003);北京市自然科学基金项目(No.4101001)资助
摘 要:针对红外图像的特点和模糊聚类算法对噪声、初始聚类中心敏感等问题,提出一种遗传模糊核聚类算法.该算法对红外图像像素灰度值进行全局的聚类分析并计算最优的聚类中心和隶属度矩阵,根据聚类结果和最大隶属度原则进行红外图像分割.通过实验验证,文中算法能较好地分割含高斯噪声、背景简单或复杂的红外图像.Aiming at the characteristics of infrared images and the sensitivity of fuzzy clustering algorithm to the noise and the initial clustering center, a genetic kernel fuzzy C-Means clustering algorithm(G_KFCM) is presented. The gray values of the infrared images are clustered globally. Then the optimal clustering center and the membership matrix are calculated by the G_KFCM. The image segmentation is performed according to the clustering result and the maximum membership principle. The experimental results show G_KFCM is effective to the infrared images respectirely including Gaussian noise, simple or complex background.
关 键 词:红外图像 遗传模糊核聚类(G_KFCM) 聚类中心 隶属度矩阵
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222