几何概型的联系概率(复概率)与概率的补数定理  被引量:14

Contact probability (complex probability) of the geometry probability and the complement number theorem of probability

在线阅读下载全文

作  者:赵森烽[1] 赵克勤[2,3] 

机构地区:[1]浙江工业大学之江学院理学系,浙江杭州310024 [2]诸暨市联系数学研究所,浙江诸暨311811 [3]浙江大学非传统安全与和平发展中心,浙江杭州310058

出  处:《智能系统学报》2013年第1期11-15,共5页CAAI Transactions on Intelligent Systems

基  金:国家社会科学基金重点资助项目(08ASH006);教育部哲学社会科学研究重大课题攻关项目(08JZD0021-D)

摘  要:为研究等可能随机试验结果为无穷多时的联系概率计算和应用,借助简单的"均匀投针"随机试验,导出几何概型的联系概率(复概率).该联系概率中的主概率和伴随概率依次对应于主事件的大数概率(主概率)和主事件的即或概率(伴随事件的大数概率).在此基础上给出了随机事件的表现定理和概率的补数定理,利用后者可以在已知一个随机事件概率的基础上方便地得到该事件的联系概率.通过实例说明了几何概型的联系概率与古典概型的联系概率具有同样的形式和性质.In order to research the calculation and application of contact probability when the result of equally likely random trial is infinite, the researcher utilized the simple "uniform needle" random test to derive contact probabili- ty ( complex probability) of geometry probability. The main probability and the concomitant probability of the con- tact probability respectively correspond to the great number probability ( main probability) of the main event and the even if probability ( great number probability of concomitant event) of the main event. And on this basis, the repre- sentation theorem of the random event and complement number theorem of probability were provided in the study. The complement number theorem was used to conveniently find the contact probability of the event based on the premise of knowing the probability of a random event. The results illustrated that the contact probability of geometry probability had the same form and property with the contact probability of typical probability.

关 键 词:随机试验 几何概型 联系概率(复概率) 概率 表现定理 补数定理 

分 类 号:O211.6[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象