Interactive effects of morphine and dopaminergic compounds on spatial working memory in rhesus monkeys  

Interactive effects of morphine and dopaminergic compounds on spatial working memory in rhesus monkeys

在线阅读下载全文

作  者:Jian-Hong Wang Joshua Dominie Rizak Yan-Mei Chen Liang Li Xin-Tian Hu Yuan-Ye Ma 

机构地区:[1]State Key Laboratory of Brain and Cognitive Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences [2]Graduate University of Chinese Academy of Sciences [3]Department of Psychology, Speech and Hearing Research Center, Key Laboratory on Machine Perception (Ministry of Education), Peking University

出  处:《Neuroscience Bulletin》2013年第1期37-46,共10页神经科学通报(英文版)

基  金:supported by the National Basic Research Development Program(973program)of China(2012CB825500,2011CB707800);Basic Research Frontier Project of Chinese Academy of Sciences,China(KSCX2-EW-J-23);National Natural Science Foundation of China(31271167,31271168,81271495,31070963,31070965);Strategic Priority Research Program of the Chinese Academy of Science(XDB02020500)

摘  要:Opiates and dopamine (DA) play key roles in learning and memory in humans and animals. Although interactions between these neurotransmitters have been found, their functional roles remain to be fully elucidated, and their dysfunction may contribute to human diseases and addiction. Here we investigated the interactions of morphine and dopaminergic neurotransmitter systems with respect to learning and memory in rhesus monkeys by using the Wisconsin General Test Apparatus (WGTA) delayed-response task. Morphine and DA agonists (SKF-38393, apomorphine and bromocriptine) or DA antagonists (SKF-83566, haloperidol and sulpiride) were co-administered to the monkeys 30 min prior to the task. We found that dose-patterned co-administration of morphine with D1 or D2 antagonists or agonists reversed the impaired spatial working memory induced by morphine or the compounds alone. For example, morphine at 0.01 mg/kg impaired spatial working memory, while morphine (0.01 mg/kg) and apomorphine (0.01 or 0.06 mg/kg) co-treatment ameliorated this effect. Our findings suggest that the interactions between morphine and dopaminergic compounds influence spatial working memory in rhesus monkeys. A better understanding of these interactive relationships may provide insights into human addiction.Opiates and dopamine (DA) play key roles in learning and memory in humans and animals. Although interactions between these neurotransmitters have been found, their functional roles remain to be fully elucidated, and their dysfunction may contribute to human diseases and addiction. Here we investigated the interactions of morphine and dopaminergic neurotransmitter systems with respect to learning and memory in rhesus monkeys by using the Wisconsin General Test Apparatus (WGTA) delayed-response task. Morphine and DA agonists (SKF-38393, apomorphine and bromocriptine) or DA antagonists (SKF-83566, haloperidol and sulpiride) were co-administered to the monkeys 30 min prior to the task. We found that dose-patterned co-administration of morphine with D1 or D2 antagonists or agonists reversed the impaired spatial working memory induced by morphine or the compounds alone. For example, morphine at 0.01 mg/kg impaired spatial working memory, while morphine (0.01 mg/kg) and apomorphine (0.01 or 0.06 mg/kg) co-treatment ameliorated this effect. Our findings suggest that the interactions between morphine and dopaminergic compounds influence spatial working memory in rhesus monkeys. A better understanding of these interactive relationships may provide insights into human addiction.

关 键 词:working memory MORPHINE DOPAMINE rhesus monkey 

分 类 号:R96[医药卫生—药理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象