检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张隆辉[1]
机构地区:[1]四川职业技术学院学报编辑部,四川遂宁629000
出 处:《数学的实践与认识》2013年第6期235-239,共5页Mathematics in Practice and Theory
基 金:四川职业技术学院科研项目(2009205);四川省教育厅自然科学重点项目(11ZA263)
摘 要:证明了一类n阶(n=P_1P_2…p_m,p_i(i=1,2,…,m)互异为素数)环是有限循环环,并讨论了他们的结构及相关性质,最后给出了这类n阶环有零因子或有子域的充要条件.主要结果:P_1P_2…P_m阶环共有2~m个,它们是(p_(1~k_1) p_(2~k_2)…p_(m^k_m)Z)/(p_(1~k_1+1)p_(2~k_2+1)…p_(m^k_m+1)Z),其中k_i=0或1,1≤i≤m;阶是n=P_1P_2…p_m的环R可唯一分解为m个素数阶理想的直和,即R=〈α〉=(?);含pi(1≤i≤m)阶子域的P_1P_2…P_m阶环共有2^(m-1)个,它们是p_(1~k_1) p_(2~k_2)…p_(m^k_m)Z)/(p_(1~k_1+1)p_(2~k_2+1)…p_(m^k_m+1)Z),其.中k_i=0,k_j=0或1,1≤j≤m,j≠i.In this paper, we prove that a ring with order n ( where n=PiP2…pm,pi(i=1,2,…,m) are distinct primes) is a finite cycle ring. The structure of finite cycle rings and some related properties are discussed. Finally, some sufficient and necessary conditions for a finite cycle rings that have zero divisors or subfields are obtained.The main results: there are a total of 2m rings with order pip2 …Pm ,which are (p1k1p2k2…pmkmZ)/(p1k1+1p2k2+1…pmkm+1Z); the ring R with order n=pip2 pmPro carl be uniquely decom- posed into the direct sum of m prime order ideals, which is, R=(a)=m∑i=1〈n/pia); there are a rings with orderp1p2…pmwhich each has a subfield with order pi(1 〈 i 〈 m) , which axe (p1k1p2k2…pmkmZ)/(p1k1+1p2k2+1…pmkm+1Z),where ki=0,kj=0 or1,1≤j≤m,j≠i.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.20.224.152