检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘毅[1,2] 黄兵[2] 孙怀江[1] 夏德深[1]
机构地区:[1]南京理工大学计算机科学与技术学院,南京210094 [2]南京审计学院信息与科学学院,南京210029
出 处:《计算机辅助设计与图形学学报》2013年第3期402-409,共8页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(60805003)
摘 要:图割算法是图像分割中经典有效的算法,针对其在前景/背景颜色有重叠时容易产生分割错误、shrinkingbias现象及交互实时性不佳的问题,提出一种利用视觉显著性与图割的交互式图像分割算法.首先利用Mean Shift算法将原始图像高效地预分割为基于区域的图结构,使得计算量大大下降;然后结合图像内容的显著性分析提高数据项约束的可靠性,并结合局部自适应的正则化参数,有效地改善了shrinking bias现象.实验结果表明,该算法交互快速,分割结果更加精确.Graph Cuts algorithm is a classical and effective method for image segmentation. However, it tends to produce segmentation errors and shrinking bias when the foreground and background color distributions overlap, and its interactivity is less efficient. To address these problems an interactive method for image segmentation based on visual saliency and graph cuts is proposed in this paper. First the Mean Shift algorithm is applied to efficiently pre-segment the original image into regions to construct region adjacency graph, which can greatly reduce the computational complexity. Then with image saliency analysis the reliability of the data item constraint is enhanced, and by using local adaptive regularization parameter the shrinking bias problem is improved effectively. The experiments demonstrate the superior performance of the proposed method in terms of interactive efficiency and segmentation accuracy.
关 键 词:图割 交互式图像分割 高斯混合模型 视觉显著性 均值漂移
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.202.111