基于SRUKF的组网雷达系统偏差估计方法  被引量:2

Estimation Method of Sensor Bias Based on SRUKF for 3D Radar

在线阅读下载全文

作  者:张宇[1] 刘德浩[1] 陈垒[1] 

机构地区:[1]海军航空工程学院信息融合研究所,山东烟台264001

出  处:《雷达科学与技术》2013年第1期40-44,共5页Radar Science and Technology

基  金:国家自然科学基金(No.61032001);航空科学基金(No.20085184003)

摘  要:雷达组网数据处理首先要进行误差配准,来准确地估计和消除系统偏差。该算法模型建立在ECEF坐标系下,并采用均方根不敏卡尔曼滤波(SRUKF)对组网雷达系统偏差进行实时估计。该算法不仅无需计算雅可比矩阵,而且算法的方根形式增加了数值稳定性和状态协方差的半正定性。仿真结果表明,该算法可以有效地实现组网雷达的系统误差配准。Registration is a prerequisite process for the data fusion in radar networking system to esti- mate and correct systematic errors accurately. Earth-centered-earth-fixed(ECEF) coordinates is taken as the common reference coordinates, the square root unscented Kalman filter(SRUKF) is used to estimate the sen- sor bias for radar network. Moreover, the algorithm not only is unnecessary to calculate the Jacobi matrix, but also the square root forms add benefit of numerical stability and guarantee positive semi-definiteness of the state covariance. The simulation results show that the algorithm could fulfill error registration of netted radars effectively.

关 键 词:误差配准 地心地固坐标系 均方根不敏卡尔曼滤波 雷达组网 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象