检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚培[1] 王仲生[1] 姜洪开[1] 刘贞报[1] 布树辉[1]
出 处:《振动与冲击》2013年第5期144-148,共5页Journal of Vibration and Shock
基 金:国家自然科学基金面上项目(51075330;50975231;6003037)
摘 要:针对滚动轴承故障振动信号的随机性和非平稳性,提出基于局部保形投影(LPP)特征提取和自适应Boosting算法的滚动轴承故障诊断方法。首先对信号构建原始样本数据集合,提取时域、频域及时频域的相关特征,将该特征作为LPP的输入样本,得到维数降低的新数据集合并能尽可能保持原始局部流形结构。将此降维特征向量作为Adaboost输入,建立故障模型,用以识别滚动轴承故障类型。分析滚动轴承正常状态、内圈故障、外圈故障及滚动体故障特性。通过对比试验表明,基于LPP与Adaboost诊断方法识别率较高,可准确有效地对滚动轴承状态和故障进行分类。A novel method for roller bearing fault diagnosis was presented based on locality preserving projection (LPP) and adaptive boosting algorithm (Adaboost). The original dataset for vibration signals was constructed, including time domain parameters, frequency domain parameters, and time-frequency domain parameters. Successively, dimension reduced features from the original dataset were extracted by using LPP. And finally, the adaptive boosting algorithm was applied for training and classification. The situations of normal condition, inner race defect, outer race defect, and ball defect of roller bearings were analysed. To verify its advantages, some comparative trials and simulation results show its effectiveness and superiority.
关 键 词:滚动轴承 局部保形投影 特征值 特征向量 ADABOOST
分 类 号:TH17[机械工程—机械制造及自动化] TP306[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15