粒子滤波参数估计方法在齿轮箱剩余寿命预测中的应用研究  被引量:13

Residual useful life prediction of gearbox based on particle filtering parameter estimation method

在线阅读下载全文

作  者:孙磊[1] 贾云献[1] 蔡丽影[2] 张星辉[1] 

机构地区:[1]军械工程学院装备指挥与管理系,石家庄050003 [2]石家庄军械技术研究所,石家庄0500031

出  处:《振动与冲击》2013年第6期6-12,23,共8页Journal of Vibration and Shock

摘  要:针对非线性非高斯系统的剩余寿命(RUL)预测问题,提出了一种基于粒子滤波(PF)理论的设备剩余寿命预测方法。首先建立设备的非线性状态空间模型(含有未知的时变参数),然后通过粒子滤波算法估计出设备状态的概率密度函数(PDF),从而根据该PDF计算出设备的RUL。此外,计算设备RUL的期望值和95%置信区间,并对模型的预测效果进行评估,验证预测的有效性和准确性。最后通过齿轮箱的全寿命实验,对方法的有效性进行实例验证,将实验结果和传统的比例风险模型(PHM)预测结果对比分析,结果表明剩余寿命预测方法要优于传统的PHM预测方法。To solve the problem of predicting equipment residual useful life (RUL) which is non-linear and nonGaussian, a particle filtering framework for system's RUL prediction was proposed. The framework uses a non-linear statespace model of the system ( with unknown time-varying parameters) and a particle filtering (PF) algorithm to estimate the probability density function (PDF) of the state. The state PDF estimate was then used to predict the evolution of the fault indicator and ad a result obtain the PDF of the remaining useful life (RUL) for the faulty subsystem. The approach provides informations about the effectiveness and accuracy of the predictions, RUL expectations, and 95% confidence intervals for the condition under study. Data from a full life test for a gearbox were used to validate the proposed methodology, and comparisons were made between proportional hazard model (PHM) and PF method. The outcome shows that the PF method has a better effect than PHM on RUL prediction.

关 键 词:状态空间模型 粒子滤波 比例风险模型 剩余寿命预测 

分 类 号:TH17[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象