检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尹刚[1] 张英堂[1] 李志宁[1] 程利军[1] 于继全[2]
机构地区:[1]军械工程学院车辆与电气工程系 [2]中国人民解放军65181部队
出 处:《振动与冲击》2013年第6期143-148,共6页Journal of Vibration and Shock
基 金:河北省自然科学基金资助项目(E20007001048);军内科研项目资助
摘 要:针对发动机缸盖振动信号信噪比低的问题,提出了基于多尺度主元分析的故障特征增强方法。将缸盖振动信号小波包分解后,利用主成分分析对所有子带系数进行坐标变换,信号重构后再进行小波包分解,计算新坐标系下各子带的能量作为发动机故障的特征向量。仿真信号验证了本文所提算法对微弱冲击信号的增强能力,与支持向量机结合用于发动机十一种故障的诊断实例表明,故障分类准确率可达到98.76%。For the engine cylinder head vibration signal contains merely the relatively weak fault information, an feature enhancement method based on muhiscale principal component analysis was proposed. A vibration signal was decomposed by wavelet package method and the principal component analysis was used for all sub-bands coordinate transformation. Then, the signal was reconstructed in the new coordinate system. The wavelet package method was used again to decompose the new signal and the energy of each sub-band becomes the feature vector of engine's fault. Simulated signals testify the effectiveness of the proposed method. The proposed algorithm combined with support vector machine has been used in the experiments for classification of eleven kinds of engine faults and the results show that the fault classification accuracy could reach 98.76%.
关 键 词:小波包 特征增强 多尺度主元分析 故障诊断 支持向量机
分 类 号:TH113.1[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62