广义几何规划的加速全局优化算法  

An accelerating algorithm for solving global solution of generalized geometric programming

在线阅读下载全文

作  者:王开荣[1] 马琳[1] 

机构地区:[1]重庆大学数学与统计学院,重庆401331

出  处:《山东大学学报(理学版)》2013年第1期72-77,共6页Journal of Shandong University(Natural Science)

基  金:重庆市高等教育教学改革研究重点项目(102104)

摘  要:广义几何规划(generalized geometric programming,GGP)问题广泛出现在工程设计、风险管理以及工业制造等实际应用中。基于凸松弛提出GGP的加速全局优化算法,该算法通过新的剪枝技术,能将当前计算的不存在全局最优解的区域去除,从而加速算法收敛到全局最优解。最后给出了算法的收敛性证明。数值实验表明该算法是可行有效的。Generalized Geometric Programming(GGP) problems widely occur in engineering design, risk management, manufacturing, and so on. Based on the convex relaxation, an accelerating algorithm for solving global solution of gen- eralized geometric programming was proposed. A new pruning technique was used to cut away the current investigated region in which the global optimal solution does not exist and improve the convergence speed of this algorithm. Conver- gence of the algorithm was proved. Some experiments are reported to show the feasibility and efficiency of the proposed algorithm.

关 键 词:广义几何规划 全局优化 凸松弛 剪枝技术 

分 类 号:O221.2[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象