检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]平顶山学院数学与信息科学学院,河南平顶山467000 [2]西安建筑科技大学理学院,陕西西安710055
出 处:《南昌大学学报(理科版)》2013年第1期12-16,共5页Journal of Nanchang University(Natural Science)
基 金:陕西省教育厅专项科研基金资助项目(11JK0495);西安建筑科技大学青年科技基金资助项目(QN1136;QN1243)
摘 要:依据经验Bayes(EB)估计的思想方法,研究在平方损失函数下两参数Lomax分布形状参数的EB估计问题。在这种损失函数下,获得了形状参数的Bayes估计,利用密度函数的递归核估计方法构造了相应的EB估计,在适当的条件下证明了所提出的EB估计是渐近最优的,并获得了它的收敛速度。最后给出一个满足文中主要结果的实例。Based on the method of thinking of empirical Bayes(EB) estimator,the EB estimation problem of the shape parameter of Lomax distribution is investigated.Bayes estimator of the shape parameter is obtained with quadratic| loss function,and the corresponding EB estimator is constructed by the recursive kernel estimate of probability density function.It is shown that the asymptotically optimal property and convergence rate of proposed EB estimator are obtained under suitable conditions.Finally,an example about the main results of this paper is given.
关 键 词:Lomax分布 递归核估计 经验BAYES估计 渐近最优性 收敛速度
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38