检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湖南大学信息科学与工程学院,湖南长沙410082 [2]国家安全生产监督管理总局,北京100713
出 处:《湖南大学学报(自然科学版)》2013年第3期87-92,共6页Journal of Hunan University:Natural Sciences
基 金:国家林业公益性行业科研专项项目(201104090)
摘 要:基于压缩感知理论,提出了一种新的手势识别方法,考虑到单个特征的局限性,结合Zernike矩和HOG描述符从全局和局部角度描述手势外观和形状.训练阶段提取手势训练图像的Zernike矩和HOG特征构建字典,识别阶段提取待测样本特征,将其表示成相应训练字典的稀疏线性组合,采用求解l1范数的最优化问题实现分类.实验结果证明,和目前应用较广的手势识别方法相比,该方法具有较强的竞争性,而且通过融合两种形状特征,对光照、尺度、旋转等变化更具鲁棒性.A method was introduced for hand posture recognition based on compressive sensing. Con- sidering the limitations of a single feature, Zernike moment and HOG descriptors were fused to improve the robustness. Firstly, we constructed training dictionaries according to the characteristics, then the can- didate target was expressed as a sparse combination of the corresponding training dictionary, and classifica- tion results were done through solving a l1-norm based optimization problem. The proposed method can take full advantage of each feature, which is robust to rotation, noise and varying illumination. Experi- ment results show that the algorithm is competitive to the state-of-the-art hand posture recognition meth- ods, and is suitable for real-time application.
关 键 词:手势识别 压缩感知 凸优化 ZERNIKE矩 HOG描述符
分 类 号:TP319[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222