检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学环境与能源学院,北京100124
出 处:《内燃机工程》2013年第2期83-87,共5页Chinese Internal Combustion Engine Engineering
基 金:国家自然科学基金资助项目(51006012)
摘 要:建立了高压共轨燃油系统的物理模型,理论分析得出高压共轨燃油系统内轨压的主要影响因素是发动机转速、喷油量及当前油轨压力。以这3个因素为自变要素,采用查表的方法建立了前馈控制逻辑;以泵油量作为PID反馈修正自变量,改进了PID反馈控制,形成柴油机高压共轨轨压控制的策略,并进行了试验验证。研究结果表明:采用改进的闭环控制方法,降低了稳态轨压的波动,在油泵转速950 r/min,最大循环喷油量230 mg的工况下,目标轨压为160 MPa时,轨压波动由±3 MPa左右减小到±0.3 MPa左右;动态控制时超调量减小了约5 MPa,稳定时间也缩短约0.05 s。A high pressure common rail injection system model based on lumped parameter method was built up and used to analyse main factors influencing rail pressure fluctuation in commonrail system. It was concluded that they were engine speed, injected fuel delivery and current rail pressure. Then the feedforward control logic was designed by adopting maps with the three factors as independent variables. Furthermore, the PID feedback control strategy was improved by taking the pumped delivery as revised PID feedback variable. Finally the control strategy for the highpressure common rail system was completed and verified experimentally. The results show that by adopting the improved closedloop control method, the rail pressure fluctuation in steady state conditions can be reduced from about ±3 MPa to about ±0. 3 MPa while pump speed 950 r/min, max. cyclic injection delivery 230 mg/cyc and set rail pressure 160 MPa; the transient overshoot is reduced about 5 MPa, stabilization time is shorten about 0. 05 s.
分 类 号:TK421[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3