一类k-次增生型变分包含解的存在性与Noor迭代逼近  被引量:3

The Existence and Noor Iterative Approximations of Solutions for a Class of Variational Inclusions with k-Subaccretive Type Mappings

在线阅读下载全文

作  者:张树义[1] 郭新琪 宋晓光[1] 

机构地区:[1]渤海大学数理学院,辽宁锦州121013 [2]大连市第三十七中学,辽宁大连116011

出  处:《数学的实践与认识》2013年第7期170-175,共6页Mathematics in Practice and Theory

摘  要:在实自反Banach空间中,引入并研究一类k-次增生型变分包含问题,证明了这类变分包含解的存在性、唯一性以及带混合误差的Noor三步迭代序列的收敛性,给出了收敛率的估计式,从而本质改进,统一和发展了谷峰教授的新近的结果.In this paper, a class of variational inclusions problem with κ-subaccretive type mappings are introduced and studied in real reflexive Banach spaces. The existence and uniqueness of solution for this problem are proved and convergence and stability of Noor three-step iterative sequences with mixed errors of solutions for the variational inclusion with κ-subaccretive type mappings are studied. Furthermore, general convergence rate estimates are given in our results, which essentially improve, unify and extend the recent results obtained by Gu professor.

关 键 词:k-次增生映象 变分包含 Noor三步迭代序列 收敛率估计 混合误差 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象