检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院半导体研究所神经网络实验室,北京100083
出 处:《控制理论与应用》2013年第3期307-315,共9页Control Theory & Applications
基 金:国家自然科学基金资助项目(61076014);江苏省高校自然科学基金资助项目(10KJA510042);中科院战略性先导科技专项资金资助项目(XDA06020700)
摘 要:本文针对传统分布估计算法在建立概率模型时面临的各种困难,提出一种基于条件概率和Gibbs抽样的概率模型,能有效改进分布估计算法的通用性.使用该模型的分布估计算法利用进化过程中有前途的优秀个体构造出多个监督学习样本集,并对每个样本集估计出对应分量的条件概率,再使用这一组条件概率进行Gibbs抽样产生新的个体替代种群中的劣等个体.通过仿真实验表明,改进后的算法能够求解出可加性降解函数的全局最优解,表现出较强的全局优化能力.A stochastic model based on conditional probability and Gibbs sampling is proposed to cope with the mod- eling problems occurred in traditional algorithms for distribution estimation, and extends the generality of the algorithm. The algorithm with this model takes promised individuals in the evolution process to form supervised training sets. For each of such sets, we estimate the conditional probability of a component given other components, and execute a Gibbs sampling procedure to generate new candidates for replacing inferior ones. The result of computer experiments shows that the improved algorithm can obtain the global optimum of additively decomposed functions, demonstrating a strong ability in global optimization.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.147.165