基于KNN-SVM的网络安全态势评估模型  被引量:16

Assessment model of network security situation based on K Nearest Neighbor and Support Vector Machine

在线阅读下载全文

作  者:何永明[1] 

机构地区:[1]义乌工商职业技术学院,浙江义乌322000

出  处:《计算机工程与应用》2013年第9期81-84,共4页Computer Engineering and Applications

基  金:浙江省教育厅项目(No.Y201226370);浙江省教科规项目(No.SCG286)

摘  要:为了提高网络安全态势评估性能,提出一种K近邻和支持向量机相融合的网络安全态势评估模型(KNN-SVM)。将网络安全数据集输入到支持向量机学习,找到支持向量集,对于待评估网络安全态势样本,计算其与最优分类超平面间的距离,如果距离大于阈值,采用支持向量机进行网络安全态势评估,否则采用K近邻进行评估,以解决支持向量机对超平面附近样本易错分的缺陷,减少SVM的误判率。仿真结果表明,相对于单独SVM,KNN-SVM提高了网络安全态势评估正确率,而且性能更加稳定。In order to improve the network security situation assessment performance, this paper proposes assessment model (KNN-SVM) which integrates the K Nearest Neighbor with Support Vector Machine. The network security data set is input to the Support Vector Machine to learn and finds support vector set. When the distance between the sample of network security situation and the optimal classification hyper plane is bigger than threshold, the Support Vector Machines are used to assess the network security situation, otherwise the K Nearest Neighbor is used to assess the network security situation to solve the defects and reduce the error rate of SVM. The simulation results show that, compared with the single SVM, KNN-SVM improves network security situation assessment accuracy and has more stable performance.

关 键 词:网络安全态势 支持向量机 K近邻算法 指标体系 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象