检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国电子科技集团公司第二十研究所,西安710068
出 处:《现代导航》2013年第2期148-152,共5页Modern Navigation
摘 要:针对卡尔曼滤波融合跟踪对系统模型准确度和先验信息精度要求较高的问题,提出一种基于协方差加权的卡尔曼滤波融合方法,利用最小二乘准则作为误差加权的标准,使误差小的传感器加权因子大。基于此,再利用卡尔曼滤波融合,充分保留有用信息,抑制噪声干扰。在目标跟踪应用中,即使噪声统计信息未知且噪声互相关,利用该方法仍能够获得最小均方误差准则下的最优目标状态跟踪估计。The tracking based on Kalman filter fusion requires accurate system model and exact apriori information. Therefore, a novel method based on Kalman filter fusion in weighted covariance is proposed, which can increase the weighting factor of the sensor with less error according to the criterion of least squares. The Kalman filter fusion method can retain effectively valuable information and suppress noise. In such application as target tracking, even if the statistic information of noise is unknown, but correlative, optimal state estimation for target is still carried out by the proposed method in the criterion of least squares.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229