基于协方差加权的卡尔曼滤波融合跟踪算法  被引量:1

Tracking Algorithm Based on Kalman Filter Fusion in Weighted Covariance

在线阅读下载全文

作  者:唐政[1] 郝明[1] 潘积远[1] 顾仁财[1] 

机构地区:[1]中国电子科技集团公司第二十研究所,西安710068

出  处:《现代导航》2013年第2期148-152,共5页Modern Navigation

摘  要:针对卡尔曼滤波融合跟踪对系统模型准确度和先验信息精度要求较高的问题,提出一种基于协方差加权的卡尔曼滤波融合方法,利用最小二乘准则作为误差加权的标准,使误差小的传感器加权因子大。基于此,再利用卡尔曼滤波融合,充分保留有用信息,抑制噪声干扰。在目标跟踪应用中,即使噪声统计信息未知且噪声互相关,利用该方法仍能够获得最小均方误差准则下的最优目标状态跟踪估计。The tracking based on Kalman filter fusion requires accurate system model and exact apriori information. Therefore, a novel method based on Kalman filter fusion in weighted covariance is proposed, which can increase the weighting factor of the sensor with less error according to the criterion of least squares. The Kalman filter fusion method can retain effectively valuable information and suppress noise. In such application as target tracking, even if the statistic information of noise is unknown, but correlative, optimal state estimation for target is still carried out by the proposed method in the criterion of least squares.

关 键 词:协方差加权 卡尔曼滤波 目标跟踪 信息融合 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象