检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐荻音[1] 于劲松[1] 陈雄姿[1] 王宏伦[2]
机构地区:[1]北京航空航天大学自动化科学与电气工程学院,北京100191 [2]北京航空航天大学无人驾驶飞行器设计研究所,北京100191
出 处:《北京航空航天大学学报》2013年第3期411-415,共5页Journal of Beijing University of Aeronautics and Astronautics
基 金:航空科学基金资助项目(20100751010;2010ZD11007)
摘 要:针对故障特征数据维数高、非线性且系统难以建立物理模型的故障诊断问题,提出了一种全局的无关线性图嵌入故障特征提取算法.通过监督学习建立原始特征的关系图,以线性图嵌入为框架进行特征降维.特征的降维过程既保留了同类数据的局部结构,又考虑了异类数据之间的全局分布,同时最大程度地消除了特征之间的统计相关性.在标准故障数据集上的实验结果表明:与已有的经典算法相比,能更有效地提取出故障的典型特征,因而更有利于故障诊断系统训练网络的快速收敛,实现快速、准确的故障诊断.Systematic approach to extract the most effective information from original features is of great importance and efficiency for fault detection where physical modeling is highly difficult and the original features are highly dimensional and nonlinear. An algorithm named globality-based uncorrelated linear extension of graph embedding for fault feature extraction was therefore proposed. Supervised learning was used to establish the relationship between original features, and the linear extension of graph embedding was adopted as the fea- ture extraction framework. Great efforts were taken to combine the locality-preserving properties inside the classes and global distribution between different classes, in order to discover both the local and global structure of original features. Information redundancy was greatly reduced by eliminating the statistic correlation between extracted features. Experimental results on standard dataset demonstrate the superiority of this proposed algo- rithm to many classical feature extraction methods. Thus, a better efficiency in the convergence of training net- work and in the fault detection can be achieved.
关 键 词:故障诊断 特征提取 统计不相关线性图嵌入
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200