检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学自动化学院,陕西西安710072
出 处:《西北工业大学学报》2013年第2期206-209,共4页Journal of Northwestern Polytechnical University
基 金:国家自然科学基金(61273362);西北工业大学基础研究基金(NPU-FFR-JC201041)资助
摘 要:提出了一种利用稀疏表达检测多幅图像中协同显著目标的方法。首先用独立变量分析方法训练得到自然图像一组稀疏基,接着求出检测图像的稀疏表达,然后定义了多变量K-L散度度量它们之间的相似性,最后,根据K-L散度性质找出散度下降明显的地方,检测出多幅图像的共同显著性目标。实验结果表明,该方法正确有效,具有和人类视觉特性相符合的显著性目标检测效果。We propose what we believe to be a new algorithm for detecting the co-saliency in muhiple images. First, we use the independent component analysis to learn and obtain a set of sparse bases of a natural image through filtering the input image and then use them to work out the sparse coding representation of the image to be detected. Second, we define the multi-variable Kullback-Leibler (K-L) divergence to measure the similarity among multiple images. Third, according to the properties of the K-L divergence, we detect the region where the divergence decreases significantly, or the similarity of the image, thus detecting the co-saliency in multiple images. To verify the effectiveness of our algorithm, we test the image co-saliency detection effect with the photos we took. The test results, given in Fig. 3, and their analysis show preliminarily that the image co-saliency detection effect of our new algorithm is the same as that of human visual characteristics.
关 键 词:算法 图像处理 独立变量分析 协同显著性 稀疏表达 K—L散度
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30