检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽师范大学数学计算机科学学院,安徽芜湖241000
出 处:《安徽师范大学学报(自然科学版)》2012年第6期511-513,共3页Journal of Anhui Normal University(Natural Science)
基 金:Supported by Natural Science of Education Department of Anhui Province(KJ2010A126)
摘 要:本文讨论了G-morphic环与单位π-正则环的关系,并证明了(1)环R是单位π-正则环等价于对R中每个元素a,存在正整数n,使得an=e+u.并且anR∩eR=0,其中e是幂等元且u是环R中单位,(2)在约化的条件下,正则环,强正则环,强π-正则环,单位正则环,单位π-正则环与G-morphic环是等价的.The purpose of this paper is to prove some properties of the unit π- regular rings and to show some relations among G-morphic rings, unit π- regular rings and some special ones. We prove that: (1) A ring R is unit π- regular if and only if, for every element a of R, there exists n ∈ Z+, such that aan can be written as e + u, and anR∩ eR = 0, where e is an idempotent and u is a unit in R, (2) In a reduced ring, regular ring, strongly regular rings, unit ~r - regular ring and G-morphic ring are eqnivalent.
关 键 词:G-MORPHIC环 单位π-正则环 幂等元 单位
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222