多特征和神经网络相结合的语音端点检测算法  被引量:2

SPEECH ENDPOINTS DETECTION ALGORITHM BASED ON MULTIPLE FEATURES AND NEURAL NETWORK COMBINATION

在线阅读下载全文

作  者:金敏[1] 

机构地区:[1]贵阳学院继续教育学院,贵州贵阳550003

出  处:《计算机应用与软件》2013年第5期307-310,共4页Computer Applications and Software

摘  要:为了提高语音端点检测正确率,提出一种基于多特征和神经网络相结合的语音端点检测算法。首先分别提取语音信号的短时能量特征、时域方差特征和频域方差特征,然后将这些特征量作为神经网络输入进行训练和建模,最后判断出该信号的类别。仿真实验表明,相对于单一特征语音端点检测算法,多特征融合和神经网络检测算法提高了语音端点检测正确率,具有更好的适应性和鲁棒性,对不同信噪比的信号都有较好的检测能力。This paper presents a method for speech endpoint detection algorithm based on the combination of multiple features and neural network to improve the detection accuracy rate.Firstly,the features of short-time energy,time-domain variance and frequency-domain variance of speech signals are extracted respectively,and then these feature quantities are employed as the input of neural network for training and modelling,and finally the signal's category are determined.Simulation experiments prove that compared with single feature speech endpoint detection algorithm,the proposed algorithm improves the detection accuracy rate,has better adaptability and robustness and has preferable detection ability on signals with different SNR.

关 键 词:神经网络 语音端点 特征提取 信噪比 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象