检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《大学数学》2013年第2期50-55,共6页College Mathematics
基 金:国家自然科学基金(60473114);安徽省教育厅重点项目基金(KJ2008A027)
摘 要:利用Samelson型矩阵广义逆,构造了一种基于Thiele型连分式插值与重心有理插值的相结合的二元矩阵值混合有理插值格式,这种新的混合矩阵值有理插值函数继承了连分式插值和重心插值的优点,它的表达式简单,计算方便,数值稳定性好.该算法满足有理插值问题所给的插值条件,同时给出了误差估计分析.最后用数值算例验证了插值算法的有效性.By use of Samelson type generalized inverse of matrixs, a model of the thiele-barycentric type matrix- valued bivariate blending rational interpolant algorithm was constructed on the rectangular grids, which based on the combination of thiele-type continued fraction interpolation and barycentric rational interpolantion. This new blending matrix-valued rational interpolation inherited the advantages of the continued fraction interpolation and the barycentric interpolation, also it had simple expression, numerical stability and was easy to calculate . The algorithm satisfied the given interpolating conditions and then the error estimation analysis was given out. In the end, a numerical example was presented to illustrate the efficiency of this algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.248.54