Thiele重心型矩阵值混合有理插值算法  被引量:1

Thiele-barycentric Type Matrix-valued Blending Rational Interpolant Algorithm

在线阅读下载全文

作  者:郑涛[1] 唐烁[1] 余小磊[1] 

机构地区:[1]合肥工业大学数学学院,安徽合肥230009

出  处:《大学数学》2013年第2期50-55,共6页College Mathematics

基  金:国家自然科学基金(60473114);安徽省教育厅重点项目基金(KJ2008A027)

摘  要:利用Samelson型矩阵广义逆,构造了一种基于Thiele型连分式插值与重心有理插值的相结合的二元矩阵值混合有理插值格式,这种新的混合矩阵值有理插值函数继承了连分式插值和重心插值的优点,它的表达式简单,计算方便,数值稳定性好.该算法满足有理插值问题所给的插值条件,同时给出了误差估计分析.最后用数值算例验证了插值算法的有效性.By use of Samelson type generalized inverse of matrixs, a model of the thiele-barycentric type matrix- valued bivariate blending rational interpolant algorithm was constructed on the rectangular grids, which based on the combination of thiele-type continued fraction interpolation and barycentric rational interpolantion. This new blending matrix-valued rational interpolation inherited the advantages of the continued fraction interpolation and the barycentric interpolation, also it had simple expression, numerical stability and was easy to calculate . The algorithm satisfied the given interpolating conditions and then the error estimation analysis was given out. In the end, a numerical example was presented to illustrate the efficiency of this algorithm.

关 键 词:Thiele连分式 重心有理插值 偏倒差商 

分 类 号:O241.3[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象