检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学杂志》2013年第3期419-431,共13页Journal of Mathematics
基 金:Supported by the Natural Science Foundation of Anhui Education Committee(KJ2007A003);the"211 Project"for Academic Innovative Teams of Anhui University(KJTD002B);the Doctoral Scientific Research Project for Anhui Medical University(XJ201022);the Key Project for Hefei Normal University(2010kj04zd);the Provincial Excellent Young Talents Foundation for Colleges and Universities of Anhui Province(2011SQRL126);the Academic Innovative Scientific Research Project of Postgraduates for Anhui University(yfc100020;yfc100028)
摘 要:本文研究了一类非多项式平面向量场的极限环.利用形式级数发,Dulac准则方法,Hopf分支理论,以及广义Li′enard平面向量场理论,获得了判定原点为焦点或者中心,讨论极限环不存在性,解析从原点分支出极限环,以及建立极限环的存在性,唯一性和稳定性等的一些充分条件,推广了文献[5]中的结果.In this article, we study the limit cycles for a class of non-polynomial planar vector fields. By applying Liapunov method theory, the method of Dulac criterion, Hopf bifurcation theory, and the generalized Li@nard planar vector fields theory, we obtain some sufficient conditions for the origin to be a focus or center, for the non-existence of the limit cycles, for analying bifurcating the limit cycles from the origin, and for building the existence, uniqueness and stability of the limit cycles, which generalizes the existing results in [51.
关 键 词:非多项式平面向量场 极限环 形式级数法理论 Dulac准则 Hopf分支理论 广义Li′enard平面向量场
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.245.229